266 research outputs found

    The Origin of the Solar Flare Waiting-Time Distribution

    Full text link
    It was recently pointed out that the distribution of times between solar flares (the flare waiting-time distribution) follows a power law, for long waiting times. Based on 25 years of soft X-ray flares observed by Geostationary Operational Environmental Satellite (GOES) instruments it is shown that 1. the waiting-time distribution of flares is consistent with a time-dependent Poisson process, and 2. the fraction of time the Sun spends with different flaring rates approximately follows an exponential distribution. The second result is a new phenomenological law for flares. It is shown analytically how the observed power-law behavior of the waiting times originates in the exponential distribution of flaring rates. These results are argued to be consistent with a non-stationary avalanche model for flares.Comment: 7 pages, 3 figures, accepted by ApJ Letter

    Modeling a falling slinky

    Full text link
    A slinky is an example of a tension spring: in an unstretched state a slinky is collapsed, with turns touching, and a finite tension is required to separate the turns from this state. If a slinky is suspended from its top and stretched under gravity and then released, the bottom of the slinky does not begin to fall until the top section of the slinky, which collapses turn by turn from the top, collides with the bottom. The total collapse time t_c (typically ~0.3 s for real slinkies) corresponds to the time required for a wave front to propagate down the slinky to communicate the release of the top end. We present a modification to an existing model for a falling tension spring (Calkin 1993) and apply it to data from filmed drops of two real slinkies. The modification of the model is the inclusion of a finite time for collapse of the turns of the slinky behind the collapse front propagating down the slinky during the fall. The new finite-collapse time model achieves a good qualitative fit to the observed positions of the top of the real slinkies during the measured drops. The spring constant k for each slinky is taken to be a free parameter in the model. The best-fit model values for k for each slinky are approximately consistent with values obtained from measured periods of oscillation of the slinkies.Comment: 30 pages, 11 figure

    On the Brightness and Waiting-time Distributions of a Type III Radio Storm observed by STEREO/WAVES

    Full text link
    Type III solar radio storms, observed at frequencies below approximately 16 MHz by space borne radio experiments, correspond to the quasi-continuous, bursty emission of electron beams onto open field lines above active regions. The mechanisms by which a storm can persist in some cases for more than a solar rotation whilst exhibiting considerable radio activity are poorly understood. To address this issue, the statistical properties of a type III storm observed by the STEREO/WAVES radio experiment are presented, examining both the brightness distribution and (for the first time) the waiting-time distribution. Single power law behavior is observed in the number distribution as a function of brightness; the power law index is approximately 2.1 and is largely independent of frequency. The waiting-time distribution is found to be consistent with a piecewise-constant Poisson process. This indicates that during the storm individual type III bursts occur independently and suggests that the storm dynamics are consistent with avalanche type behavior in the underlying active region.Comment: 14 pages, 4 figures, 1 table. Accepted for publication in Astrophysical Journal Letter
    • …
    corecore